A proof of GR 3.255

In this post, we will prove the following monstrous looking identity from Gradshteyn and Ryzhik (3.255): $$ \int _0^1 \frac{x^{\mu+\frac{1}{2}} (1-x)^{\mu-\frac{1}{2}}}{(c+2bx-ax^2)^{\mu+1}}dx = \frac{\sqrt{\pi}}{\left\{a + \left(\sqrt{c+2b-a} + \sqrt{c}\right)^2\right\}^{\mu+\frac{1}{2}}\sqrt{c+2b-a}} \frac{\Gamma \left(\mu + \frac{1}{2}\right)}{\Gamma\left(\mu+1\right)}$$ where $c+2b-a>0$, $a + \left(\sqrt{c+2b-a} + \sqrt{c}\right)^2 > 0$ and $\text{Re }\mu > -\frac{1}{2}$

Let us denote the integral by $I$. The first step is to use a Mobius transformation to get rid of the quadratic in the denominator. Pick $\rho > 0$ such that $$ c\rho^2 + 2b\rho – a = 0 \; \implies \; \rho = \frac{-b+\sqrt{b^2+ac}}{c} > 0 $$ Now, set $x=\frac{u}{1+\rho u}$ and $dx = \frac{du}{(1+\rho u)^2}$ to get: $$I = \frac{1}{c^{\mu+1}}\int_0^U \frac{u^{\mu+\frac{1}{2}} (1+(\rho-1)u)^{\mu-\frac{1}{2}}}{(1+\kappa u)^{\mu+1}}du$$ where $U=\frac{1}{1-\rho}$ and $\kappa = 2\left(\rho+\frac{b}{c}\right)=\frac{2\sqrt{b^2+ac}}{c}$.

Posted in Uncategorized | Leave a comment

Integral representations of the reciprocal beta function

In this post, we’ll prove a very interesting identity: $$ \int_0^\pi \left(\sin(\theta) \right)^{\alpha-1} e^{i \beta \theta} \; d\theta = \frac{\pi e^{\frac{i \pi}{2} \beta}}{\alpha 2^{\alpha-1} B \left(\frac{\alpha+\beta+1}{2}, \frac{\alpha-\beta+1}{2} \right)} $$ where $\beta + 1> \alpha > 0$ and $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ is the Beta function.

The idea is to integrate the principal branch of $f(z) = (1-z^2)^{\alpha-1} (-iz)^{\beta – \alpha}$ around the following contour:

where

  • $C_\epsilon$ is an arc parameterized by $e^{it}$, where $\varphi_\epsilon\leq t \leq \pi – \varphi_\epsilon$ and $\varphi_\epsilon = \text{arctan}\left( \frac{\epsilon \sqrt{4-\epsilon^2}}{2-\epsilon^2}\right)$.
  • $I_{1,\epsilon}, \; I_{2,\epsilon}, \; I_{3,\epsilon}$ are circular indents of radius $\epsilon$ around the branch points -1, 1 and 0, respectively.
  • $S_{1,\epsilon}$ is a line joining $-1+\epsilon$ and $-\epsilon$.
  • $S_{2,\epsilon}$ is a line joining $\epsilon$ and $1-\epsilon$.

The condition $\beta + 1 > \alpha > 0 $ ensures that: $$ \lim_{\epsilon\to 0^+}\int_{I_{1,\epsilon}}f(z)\; dz = \lim_{\epsilon\to 0^+}\int_{I_{2,\epsilon}}f(z)\; dz = \lim_{\epsilon\to 0^+}\int_{I_{3,\epsilon}}f(z)\; dz = 0 $$ We’ll only prove that the integral around $I_{3,\epsilon}$ tends to 0 as $\epsilon \to 0^+$. The proof is quite similar for $I_{1,\epsilon}$ and $I_{2,\epsilon}$. We have $$ \begin{aligned} \left| \int_{I_{3,\epsilon}} f(z) \; dz\right| &= \left|-i\epsilon \int_0^\pi e^{it} f(\epsilon e^{it})\; dt\right| \\ &\leq \epsilon\int_0^\pi |f(\epsilon e^{it})| \; dt \\ &\leq \epsilon^{\beta-\alpha+1} \int_0^\pi |1-\epsilon^2 e^{2it}|^{\alpha-1} \; dt \\ &\leq \pi \epsilon^{\beta-\alpha+1}(1+\epsilon^2)^{\alpha-1} \end{aligned} $$ Hence, $\left| \int_{I_{3,\epsilon}} f(z) \; dz\right| \to 0$ as $\epsilon\to 0^+$. Next, by Cauchy’s theorem we have: $$ \begin{aligned} \int_{-1}^1 f(z) \; dz &= -i\int_0^\pi e^{it}f(e^{it})\; dt \end{aligned} $$ The integral on the left hand side is: $$ \begin{aligned}\int_{-1}^1 f(z) \; dz &= 2\cos\left( (\beta-\alpha)\frac{\pi}{2}\right)\int_0^1 (1-z^2)^{\alpha-1} z^{\beta-\alpha}\; dz \\ &= \cos\left( (\beta-\alpha)\frac{\pi}{2}\right) \int_0^1 (1-w)^{\alpha-1} w^{\frac{\beta-\alpha-1}{2}}\; dw \\ &= \cos\left( (\beta-\alpha)\frac{\pi}{2}\right) B\left(\alpha, \frac{\beta-\alpha+1}{2} \right) \\ &= \cos\left( (\beta-\alpha)\frac{\pi}{2}\right) \frac{\Gamma(\alpha) \Gamma\left(\frac{\beta-\alpha+1}{2} \right)}{\Gamma\left(\frac{\beta+\alpha+1}{2} \right)} \\ &= \frac{\pi \Gamma(\alpha)}{\Gamma\left(\frac{\beta+\alpha+1}{2} \right) \Gamma\left(\frac{-\beta+\alpha+1}{2} \right)} \\ &= \frac{\pi}{\alpha B \left(\frac{\alpha+\beta+1}{2}, \frac{\alpha-\beta+1}{2} \right)}\end{aligned} $$ The integral on the right hand side is:

$$ \begin{aligned}-i\int_0^\pi e^{it}f(e^{it})\; dt &= \int_0^\pi (1-e^{2it})^{\alpha-1}(-i e^{it})^{\beta-\alpha+1} \; dt \\ &= \int_0^\pi (2\sin(t))^{\alpha-1}e^{i\beta t -\frac{i\pi}{2}\beta}\; dt \\ &= e^{-\frac{i\pi}{2}\beta} 2^{\alpha-1} \int_0^\pi (\sin (t))^{\alpha-1}e^{i\beta t}\; dt \end{aligned} $$

Therefore, we have:

$$ \begin{aligned}e^{-\frac{i\pi}{2}\beta} 2^{\alpha-1} \int_0^\pi (\sin (t))^{\alpha-1}e^{i\beta t}\; dt &= \frac{\pi}{\alpha B \left(\frac{\alpha+\beta+1}{2}, \frac{\alpha-\beta+1}{2} \right)} \\ \implies \int_0^\pi \left(\sin(t) \right)^{\alpha-1} e^{i \beta t} \; dt &= \frac{\pi e^{\frac{i \pi}{2} \beta}}{\alpha 2^{\alpha-1} B \left(\frac{\alpha+\beta+1}{2}, \frac{\alpha-\beta+1}{2} \right)}\end{aligned}$$ We can use a similar technique to show that: $$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\cos(t)\right)^{\alpha-1}e^{i\beta t}\; dt = \frac{\pi}{\alpha 2^{\alpha-1} B \left(\frac{\alpha+\beta+1}{2}, \frac{\alpha-\beta+1}{2} \right)}, \quad \beta+1 > \alpha > 0 $$

One can further argue using the identity theorem that these results still hold even if we relax the requirement: $\beta + 1> \alpha$.

Many interesting logarithmic integrals can be derived using these identities by differentiating both sides with respect to the parameters $\alpha$ and $\beta$. One such example is:

$$ \int_0^{\frac{\pi}{2}} \theta^2 \log^2\left(\cos \theta\right)d\theta = \frac{11\pi^5}{1440}+\frac{\pi^3}{24}\log^2(2)+\frac{\pi}{2} \log(2)\zeta(3) $$

Posted in Beta function, Logarithmic Integrals | Leave a comment

Introduction to Theta Functions II

Infinite product representations of theta functions

Let $f(z) = \prod_{n=1}^{\infty} (1-q^{2n-1}e^{2iz})(1-q^{2n-1}e^{-2iz})$. Each of these two products converge absolutely and uniformly in any bounded domain of values of $z$. Hence $f(z)$ is analytic throughout the finite part of the $z$ plane. The zeros of $f(z)$ are simple zeros at the points $z=\frac{2n+1}{2}\pi \tau i + m\pi i$ where $m,n\in \mathbb{Z}$. So, the zeros of $f(z)$ coincide with the zeros of $\vartheta_4(z)$. Therefore, the function $\frac{\vartheta_4(z)}{f(z)}$ has no poles or zeros in the finite part of the plane. Also, it is easy to see that $f(z+\pi) = f(z)$ and $$ \begin{aligned} f(z+\pi \tau) &= \prod_{n=1}^\infty (1-q^{2n+1}e^{2iz})(1-q^{2n-3}e^{-2iz}) \\ &= f(z) \frac{1-q^{-1}e^{-2iz}}{1-qe^{2iz}} \\ &= -q^{-1}e^{-2iz} f(z) \end{aligned} $$ This is, $\frac{\vartheta_4(z)}{f(z)}$ is a doubly periodic function with periods $\pi,\pi\tau$ and has no poles and zeros. By section 20.12 of [2], it is simply a constant, say $G$. We have $$ \vartheta_4(z) = G \prod_{n=1}^{\infty} (1-q^{2n-1}e^{2iz})(1-q^{2n-1}e^{-2iz})\quad (1) $$ Incrementing $z$ by the half periods $\frac{\pi}{2}, \frac{\pi \tau}{2}$ and $\frac{\pi +\pi\tau}{2}$, we get the product representations for the other theta functions: $$ \begin{aligned} \vartheta_3(z) &= G \prod_{n=1}^{\infty} (1+q^{2n-1}e^{2iz})(1+q^{2n-1}e^{-2iz})\quad (2) \\ \vartheta_1(z) &= 2G q^{\frac{1}{4}}\sin(z) \prod_{n=1}^{\infty} (1-q^{2n}e^{2iz})(1-q^{2n}e^{-2iz}) \quad (3) \\ \vartheta_2(z) &= 2G q^{\frac{1}{4}}\cos(z) \prod_{n=1}^{\infty} (1+q^{2n}e^{2iz})(1+q^{2n}e^{-2iz}) \quad (4) \end{aligned} $$ Now, all that left is to find the constant $G$. From identity (3), it easy to see that $$ \vartheta_1′(0) = 2G q^{\frac{1}{4}}\prod_{n=1}^{\infty} (1-q^{2n})^2 $$ Now, using the identity $\vartheta_1′(0)=\vartheta_2(0)\vartheta_3(0)\vartheta_4(0)$, we get: $$ \begin{aligned} 2G q^{\frac{1}{4}}\prod_{n=1}^{\infty} (1-q^{2n})^2 &= \left\{2G q^{\frac{1}{4}}\prod_{n=1}^{\infty}(1+q^{2n})^2 \right\} \times \left\{G\prod_{n=1}^{\infty}(1+q^{2n-1})^2 \right\} \\ &\quad \times \left\{G \prod_{n=1}^{\infty}(1-q^{2n-1})^2 \right\} \\ \implies G &= \prod_{n=1}^\infty (1-q^{2n}) \end{aligned} $$ Note that the rearrangements are justified since all products converge absolutely. Finally, we have $$ \begin{aligned} \vartheta_1(z) &= 2 q^{\frac{1}{4}}\sin(z) \prod_{n=1}^{\infty} (1-q^{2n})(1-2q^{2n} \cos(2z)+ q^{4n}) \quad (5) \\ \vartheta_2(z) &= 2 q^{\frac{1}{4}}\cos(z) \prod_{n=1}^{\infty} (1-q^{2n})(1+2q^{2n} \cos(2z) + q^{4n}) \quad (6) \\ \vartheta_3(z) &= \prod_{n=1}^{\infty} (1-q^{2n})(1+2q^{2n-1} \cos(2z) + q^{4n-2}) \quad (7) \\ \vartheta_4(z) &= \prod_{n=1}^{\infty} (1-q^{2n})(1-2q^{2n-1} \cos(2z) + q^{4n-2}) \quad (8) \end{aligned} $$

Derivatives of Ratios of Theta Functions

Consider the function $\phi(z) = \frac{\vartheta_1′(z)\vartheta_4(z) – \vartheta_1(z)\vartheta_4′(z)}{\vartheta_2(z)\vartheta_3(z)}$. Now, $\phi(z)$ is doubly periodic with periods $\pi$ and $\frac{\pi\tau}{2}$. Relative to these periods, the only possible poles of $\phi(z)$ are at points congruent to $\pi\over 2$. It is easy to verify that $\frac{\pi}{2}$ is a removable singularity. This means that $\phi(z)$ is a constant. Letting $z\to 0$, we see that $\phi(z)=\vartheta_4^2(0)$. It is therefore established that $$\frac{d}{dz}\left(\frac{\vartheta_1(z)}{\vartheta_4(z)} \right)=\vartheta_4^2(0) \frac{\vartheta_2(z)\vartheta_3(z)}{\vartheta_4^2(z)} \quad (9)$$ Two other identities of this kind can be derived using the same technique: $$ \begin{aligned} \frac{d}{dz}\left(\frac{\vartheta_2(z)}{\vartheta_4(z)} \right) &=-\vartheta_3^2(0) \frac{\vartheta_1(z)\vartheta_3(z)}{\vartheta_4^2(z)} \quad (10) \\ \frac{d}{dz}\left(\frac{\vartheta_3(z)}{\vartheta_4(z)} \right) &=-\vartheta_2^2(0) \frac{\vartheta_1(z)\vartheta_2(z)}{\vartheta_4^2(z)} \quad (11) \end{aligned}$$ By writing $\xi = \frac{\vartheta_1(z)}{\vartheta_4(z)}$ and making use of identities (13) and (14) from part 1, we obtain: $$\left(\frac{d\xi}{dz}\right)^2 = (\vartheta_2^2(0) – \xi^2 \vartheta_3^2(0))(\vartheta_3^2(0)-\xi^2 \vartheta_2^2(0))$$ Using the change of variables $y = \frac{\vartheta_3(0)}{\vartheta_2(0)}\xi$ and $u = \vartheta_3^2(0) z$, the above differential equation can be written as: $$ \left(\frac{dy}{du}\right)^2 = (1-y^2)(1-k^2 y^2) $$ where $k = \frac{\vartheta_2^2(0)}{\vartheta_3^2(0)}$. This differential equation has the particular solution: $$y = \frac{\vartheta_3(0)}{\vartheta_2(0)} \frac{\vartheta_1(u \vartheta_3^{-2}(0))}{\vartheta_4(u \vartheta_3^{-2}(0))}$$ We can write $y$ as a function of $u$ and $k$ as $y = \text{sn}(u,k)$ or simply $\text{sn}(u)$. Clearly, $\text{sn}(u,k)$ has periods $2\pi \vartheta^2_3(0)$ and $\pi \tau \vartheta_3^2(0)$. It has two simple poles congruent to $\frac{1}{2}\pi\tau \vartheta_3^2(0)$ and $\pi \vartheta_3^2(0) + \frac{1}{2}\pi\tau \vartheta_3^2(0)$. Also, it is easy to see that $$\int_0^1 \frac{dy}{\sqrt{(1-y^2)(1-k^2 y^2)}} = \text{sn}^{-1}(1) = \frac{\pi}{2}\vartheta_3^2(0)$$ The integral on the left is denoted by complete elliptic integral of the first kind and is denoted by $K(k)$.

References

  1. Derek F. Lawden (1989). Elliptic Functions and Applications. Springer-Verlag New York
  2. E. T. Whittaker, G. N. Watson (1927). A Course of Modern Analysis. Cambridge University Press
Posted in Elliptic Functions, Elliptic Integrals | Tagged | Leave a comment