Tag Archives: elliptic-functions

Introduction to Theta Functions II

Infinite product representations of theta functions Let $f(z) = \prod_{n=1}^{\infty} (1-q^{2n-1}e^{2iz})(1-q^{2n-1}e^{-2iz})$. Each of these two products converge absolutely and uniformly in any bounded domain of values of $z$. Hence $f(z)$ is analytic throughout the finite part of the $z$ plane. … Continue reading

Posted in Elliptic Functions, Elliptic Integrals | Tagged | Leave a comment

Introduction to Theta Functions I

The Jacobi theta functions are defined for all complex variables of $z$ and $q$ such that $|q| < 1$, as follows: $$ \begin{aligned} \vartheta_1 (z,q) &= -i \sum_{n=-\infty}^{\infty} (-1)^n q^{(n+1/2)^2} e^{i(2n+1)z} \\ \vartheta_2 (z,q) &= \sum_{n=-\infty}^{\infty} q^{(n+1/2)^2} e^{i(2n+1)z} \\ \vartheta_3 … Continue reading

Posted in Elliptic Functions, Elliptic Integrals | Tagged | Leave a comment