In this post, we will evaluate the famous Euler sum:
n=1∑∞(−1)n+1n3Hn⋯(∗)
where Hn=∑k=1nk1=∫011−t1−tndt is the n-th harmonic number. This series resists contour integration techniques which makes it’s computation quite challenging. We will start with the following well known generating function identity:
n=1∑∞Hntn=−1−tlog(1−t),−1≤t<1
Dividing the above equation by t and integrating both sides, gives us:
n=1∑∞Hnnxn=−∫0xt(1−t)log(1−t)dt=−∫0x(t1+1−t1)log(1−t)dt=Li2(x)+21log2(1−x)
where −1≤x<1.
1. Computation of ∑n=1∞n2Hnxn
Now, we will use the same process to evaluate ∑n=1∞n2Hnxn but we’ll have to divide the evaluation into two parts.
(I) First consider the case when 0≤x<1. Actually, we don’t need this case for evaluating (*) but I’ll do it anyway for completeness. We have:
n=1∑∞n2Hnxn=∫0x(tLi2(t)+21tlog2(1−t))dt=Li3(x)+21∫0xtlog2(1−t)dt=Li3(x)+21∫log(1−x)01−ett2etdt(t↦1−et)=Li3(x)+21n=1∑∞∫log(1−x)0t2entdt=Li3(x)+21n=1∑∞(n32−nlog2(1−x)(1−x)n+n22log(1−x)(1−x)n−2n3(1−x)n)=Li3(x)+2log2(1−x)log(x)+log(1−x)Li2(1−x)−Li3(1−x)+ζ(3)⋯(1)
(II) Similarly, for the case −1≤x<0, we obtain:
n=1∑∞n2Hnxn=Li3(x)−21∫x0tlog2(1−t)dt=Li3(x)+21∫0−xtlog2(1+t)dt(t↦−t)=Li3(x)+21∫0log(1−x)et−1t2etdt(t↦et−1)=Li3(x)+21n=0∑∞∫0log(1−x)t2e−ntdt=Li3(x)+6log3(1−x)+21n=1∑∞∫0log(1−x)t2e−ntdt=Li3(x)+6log3(1−x)+21n=1∑∞(n32−log2(1−x)n(1−x)−n−2log(1−x)n2(1−x)−n−2n3(1−x)−n)=Li3(x)−3log3(1−x)+2log2(1−x)log(−x)−log(1−x)Li2(1−x1)−Li3(1−x1)+ζ(3)⋯(2)
2. Evaluation of ∑n=1∞n3Hnxn
This is the hardest step in the evaluation. Once again, we will divide the evaluation into two parts.
(I) Like section 1, we’ll first consider the case when 0≤x<1.
Using integration by parts, we obtain:
∫0xtζ(3)−Li3(1−t)dt=log(t)(ζ(3)−Li3(1−t))∣∣∣∣0x−∫0x1−tlog(t)Li2(1−t)dt=log(x)(ζ(3)−Li3(1−x))−21Li22(1−x)+2ζ2(2)⋯(3)
∫0xtlog(1−t)Li2(1−t)dt=log(t)log(1−t)Li2(1−t)∣∣∣∣0x−∫0xlog(t)(1−t−Li2(1−t)+1−tlog(1−t)log(t))dt=log(x)log(1−x)Li2(1−x)+21Li22(1−x)−2ζ2(2)−∫0x1−tlog2(t)log(1−t)dt⋯(4)
∫0x2tlog(t)log2(1−t)dt=41log2(t)log2(1−t)∣∣∣∣0x+21∫0x1−tlog2(t)log(1−t)dt=41log2(x)log2(1−x)+21∫0x1−tlog2(t)log(1−t)dt⋯(5)
Putting together the results of equations (3), (4) and (5) gives us:
n=1∑∞n3Hnxn=Li4(x)+41log2(x)log2(1−x)+log(x)log(1−x)Li2(1−x)+log(x)(ζ(3)−Li3(1−x))−21∫0x1−tlog2(t)log(1−t)dt⋯(6)
(II) Now, let −1≤x<0. We have:
−∫x0tζ(3)−Li3(1−t1)dt=∫01−x−xt(1−t)ζ(3)−Li3(1−t)dt(t↦1−t−t)=∫01−x−xtζ(3)−Li3(1−t)dt+∫01−x−x1−tζ(3)−Li3(1−t)dt=log(1−x−x)(ζ(3)−Li3(1−x1))−21Li22(1−x1)+2ζ2(2)+ζ(3)log(1−x)+Li4(1−x1)−ζ(4)⋯(7)
Here, we used equation (3) to simplify the integral after the transformation. Similarly, we obtain:
∫x0tlog(1−t)Li2(1−t1)dt=∫01−x−xt(1−t)log(1−t)Li2(1−t)dt=∫01−x−xtlog(1−t)Li2(1−t)dt+∫01−x−x1−tlog(1−t)Li2(1−t)dt=−log(1−x−x)log(1−x)Li2(1−x1)+21Li22(1−x1)−2ζ2(2)+Li4(1−x1)+log(1−x)Li3(1−x1)−ζ(4)−∫01−x−x1−tlog2(t)log(1−t)dt⋯(8)
∫x0(3tlog3(1−t)−2tlog2(1−t)log(−t))dt=61log3(1−x)log(1−x−x)+241log4(1−x)+41log2(1−x−x)log2(1−x)+21∫01−x−x1−tlog2(t)log(1−t)dt⋯(9)
Finally, putting these results together gives:
n=1∑∞n3Hnxn=Li4(x)+2Li4(1−x1)+log(1−x−x)(−Li3(1−x1)+6log3(1−x)−log(1−x)Li2(1−x1))+log(1−x)Li3(1−x1)+24log4(1−x)+41log2(1−x−x)log2(1−x)+ζ(3)log(−x)−2ζ(4)−21∫01−x−x1−tlog2(t)log(1−t)dt⋯(10)
The integral ∫1−tlog2(t)log(1−t)dt can be evaluated in terms of Polylogarithms (refer section 7.6 of “Polylogarithms and Associated Functions” by Leonard Lewin). But it turns out that for evaluating (*) such a calculation is not needed.
3. Evaluation of ∫0211−tlog2(t)log(1−t)dt
Let I=∫011−tlog2(t)log(1−t)dt and J=∫0211−tlog2(t)log(1−t)dt. The integral, I, can be evaluated by the differentiation under the integral technique.
I=y→0+limx→1lim∂x2∂2∂y∂∫01tx−1(1−t)y−1dt=y→0+limx→1lim∂x2∂2∂y∂{Γ(x+y)Γ(x)Γ(y)}
It takes a bit of effort to compute the derivatives in terms of Polygamma functions so I won’t write the details here. One can verify that the end result is:
I=−180π4
Now, apply integration by parts to the integral J:
J=∫0211−tlog2(t)log(1−t)dt=−2log2(t)log2(1−t)∣∣∣∣021+∫021tlog(t)log2(1−t)dt=−2log4(2)+∫2111−tlog2(t)log(1−t)dt(t↦1−t)=−2log4(4)+I−J
Now, one can solve the above equation for J to get:
J=−4log4(2)+2I=−4log4(2)−360π4
Finally, we have every thing needed to evaluate (*). Plugging in x=−1 in equation (10) and performing some simplifications gives us the beautiful result:
n=1∑∞n3Hn(−1)n+1=36011π4+12π2log2(2)−12log4(2)−47log(2)ζ(3)−2Li4(21)
A similar result is obtained by plugging x=21 into equation (6):
n=1∑∞n32nHn=720π4+24log4(2)−81log(2)ζ(3)+Li4(21)
4. Further Results
Let Hn(2)=ζ(2)−ψ1(n+1)=∑k=1nk21. Then, it is easy to verify that:
n=1∑∞tnHn(2)=1−tLi2(t),−1≤t<1
Now, dividing the above equation by t and integrating both sides, gives us:
n=1∑∞nHn(2)xn=∫0xLi2(t)(t1+1−t1)=Li3(x)+∫0x1−tLi2(t)dt=Li3(x)−log(1−x)Li2(x)−∫0xtlog2(1−t)dt
From our previous calculation, we know that
∫0xtlog2(1−t)dt=2n=1∑∞n2Hnxn−2Li3(x)
Hence, we obtain the following relation:
n=1∑∞nHn(2)xn=3Li3(x)−log(1−x)Li2(x)−2n=1∑∞n2Hnxn⋯(11)
Once again, divide the above equation by x and integrate both sides to get:
n=1∑∞n2Hn(2)xn=3Li4(x)+21Li22(x)−2n=1∑∞n3Hnxn⋯(12)
Equations (11) and (12) are valid for −1≤x<1. Plugging in x=21 in equation (12) and using the known closed form for ∑n=1∞n32nHn gives us:
n=1∑∞n22nHn(2)=1440π4−24π2log2(2)+24log4(2)+41log(2)ζ(3)+Li4(21)
Can you evaluate, Sum[(-1)^(n+1)*HarmonicNumber[2n,2]/n^2,{n,1,Infinity}]
Thanks
Sure. I’ll give it a try.